Skip to main content
Log in

Formability of Tri-layered IF240/AZ31/IF240 Composite with Strong Bonding: Experimental and Finite Element Modeling

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this work, the formability of a hybrid material of Interstitial-Free 240 (IF240) steel and AZ31 magnesium alloy as IF240/AZ31/IF240 tri-layered sheets was investigated. For this purpose, the bonding feasibility of the high-formability IF240 steel and low-formability AZ31 sheets was first assessed. Then, the hot formability behavior of the manufactured laminated composite was evaluated. The rolling of the preheated samples established the layer bonding. The bonding strength was determined using the shear punch test. The texture and its effects on the forming behavior were studied using the x-ray Goniometry method. Nakazima dome tests were employed at ambient and elevated temperatures to determine formability and forming limit curves. The forming process simulation was performed by ABAQUS/Explicit solver, and the results were compared with the experimental data. The results showed that post-annealing time and thickness reduction have significant impacts on the bond strength. The formability of the composite laminate improved significantly by an increase in the temperature. Simulation results of the composite forming behavior were in fair agreement with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig 4
Fig. 5
Fig.6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The manuscript has no associated data.

References

  1. K.U. Kainer Ed., Magnesium Alloys and Technology, Wiley, New Jersey, 2003

    Google Scholar 

  2. H.E. Friedrich and B.L. Mordike, Magnesium Technology, Vol 212 Springer-Verlag, Berlin Heidelberg, 2006.

    Google Scholar 

  3. X. Huang, K. Suzuki, Y. Chino and M. Mabuchi, Improvement of Stretch Formability of Mg–3al–1zn Alloy Sheet by High Temperature Rolling at Finishing Pass, J. Alloys Compd., 2011, 509(28), p 7579–7584.

    Article  CAS  Google Scholar 

  4. M. Pahlavani, J. Marzbanrad, D. Rahmatabadi, R. Hashemi and A. Bayati, A Comprehensive Study on the Effect of Heat Treatment on the Fracture Behaviors and Structural Properties of Mg-Li Alloys using Rsm, Materials Research Express, 2019, 6(7), p 076554.

    Article  CAS  Google Scholar 

  5. A. Rouzbeh, M. Sedighi and R. Hashemi, Comparison Between Explosive Welding and Roll-Bonding Processes of AA1050/Mg AZ31B Bilayer Composite Sheets Considering Microstructure and Mechanical Properties, J. Mater. Eng. Perform., 2020, 29(10), p 6322–6332.

    Article  CAS  Google Scholar 

  6. B. Mordike and T. Ebert, Magnesium: Properties-Applications-Potential, Mater. Sci. Eng. A, 2001, 302(1), p 37–45.

    Article  Google Scholar 

  7. N. Lukaschkin, A. Borissow and A. Erlikh, The System Analysis of Metal Forming Technique in Welding Processes, J. Mater. Process. Technol., 1997, 66(1), p 264–269.

    Article  Google Scholar 

  8. H. Mohamed and J. Washburn, Mechanism of Solid State Pressure Welding, Weld. J., 1975, 55, p 302s–310s.

    Google Scholar 

  9. R. Jamaati and M. Toroghinejad, Cold Roll Bonding Bond Strengths: Review, Mater. Sci. Technol., 2011, 27(7), p 1101–1108.

    Article  CAS  Google Scholar 

  10. L. Li, K. Nagai and F. Yin, Progress in Cold Roll Bonding of Metals, Sci. Technol. Adv. Mater., 2008, 9(2), p 023001.

    Article  Google Scholar 

  11. D. Rahmatabadi, M. Tayyebi, R. Hashemi and G. Faraji, “Microstructure and Mechanical Properties of Al/Cu/Mg Laminated Composite Sheets Produced by the ARB Proces“ International Journal of Minerals, Metal. Mater., 2018, 25(5), p 564–572.

    CAS  Google Scholar 

  12. E. Karajibani, A. Fazli and R. Hashemi, Numerical and Experimental Study of Formability in Deep Drawing of Two-Layer Metallic Sheets, Int. J. Adv. Manuf. Technol., 2015, 80(1–4), p 113–121.

    Article  Google Scholar 

  13. O. Bouaziz, X. Sauvage and D. Barcelo, Steel-magnesium composite wire obtained by repeated co-extrusion, Materials Science Forum, Vol 654, Trans Tech Publications Ltd, Switzerland, 2010, p 1263–1266

    Google Scholar 

  14. Y. Miao, D. Han, Xu. Xiangfang and Wu. Bintao, Phase Constitution in the Interfacial Region of Laser Penetration Brazed Magnesium–Steel Joints, Mater. Charact., 2014, 93, p 87–93.

    Article  CAS  Google Scholar 

  15. A. Çetin, J. Krebs, A. Durussel, A. Rossoll, J. Inoue, T. Koseki, S. Nambu and A. Mortensen, Laminated Metal Composites by Infiltration, Metal. Mater. Trans. A., 2011, 42(11), p 3509–3520.

    Article  Google Scholar 

  16. R. Abedi and A. Akbarzadeh, Bond Strength and Mechanical Properties of Three-Layered St/Az31/St Composite Fabricated by Roll Bonding, Mater. Des., 2015, 88, p 880–888.

    Article  CAS  Google Scholar 

  17. H. Nie, C. Chi, H. Chen, X. Li and W. Liang, Microstructure Evolution of Al/Mg/Al Laminates in Deep Drawing Process, J. Market. Res., 2019, 8(6), p 5325–5335.

    CAS  Google Scholar 

  18. Q. Wang, Y. Shen, B. Jiang, A. Tang, J. Song, Z. Jiang, T. Yang, G. Huang and F. Pan, Enhanced Stretch Formability at Room Temperature for Mg-Al-Zn/Mg-Y Laminated Composite Via Porthole Die Extrusion, Mater. Sci. Eng. A, 2018, 731, p 184–194.

    Article  CAS  Google Scholar 

  19. D. Rahmatabadi, R. Hashemi, M. Tayyebi and A. Bayati, Investigation of Mechanical Properties, Formability, and Anisotropy of Dual Phase Mg-7li-1zn, Mater. Res. Express, 2019, 6(9), p 096543.

    Article  CAS  Google Scholar 

  20. M. Alipour, M.A. Torabi, M. Sareban, H. Lashini, E. Sadeghi, A. Fazaeli, M. Habibi and R. Hashemi, Finite Element and Experimental Method for Analyzing the Effects of Martensite Morphologies on the Formability of DP Steels, Mech. Based Des. Struct. Mach., 2020, 48(5), p 525–541.

    Article  Google Scholar 

  21. M. Habibi, R. Hashemi, A. Ghazanfari, R. Naghdabadi and A. Assempour, Forming Limit Diagrams by Including the M-K Model in Finite Element Simulation Considering the Effect of Bending, Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., 2018, 232(8), p 625–636.

    Google Scholar 

  22. M. Habibi, R. Hashemi, M. FallahTafti and A. Assempour, Experimental Investigation of Mechanical Properties, Formability and Forming Limit Diagrams for Tailor-Welded Blanks Produced by Friction Stir Welding, J. Manuf. Process., 2018, 31, p 310–323.

    Article  Google Scholar 

  23. R. Hill, A theory of the yielding and plastic flow of anisotropic metals. In Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, (1948), pp. 281–297.

  24. Q. Situ, M.K. Jain and M. Bruhis, A suitable criterion for precise determination of incipient necking in sheet materials, Materials Science Forum, Vol 519, Trans Tech Publications Ltd, Switzerland, 2006, p 111–116

    Google Scholar 

  25. M. Habibi, R. Hashemi, E. Sadeghi, A. Fazaeli, A. Ghazanfari and H. Lashini, Enhancing the mechanical properties and formability of low carbon steel with dual-phase microstructures, J. Mater. Eng. Perform., 2016, 25(2), p 382–389.

    Article  CAS  Google Scholar 

  26. W. Xu, D. Chen, L. Liu, H. Mori and Y. Zhou, Microstructure and Mechanical Properties of Weld-Bonded and Resistance Spot Welded Magnesium-to-Steel Dissimilar Joints, Mater. Sci. Eng. A, 2012, 537, p 11–24.

    Article  CAS  Google Scholar 

  27. H. Kim, G.T. Kang and S.I. Hong, Thermomechanical Processing and Roll Bonding of Tri-Layered Cu-Ni-Zn/Cu-Cr/Cu-Ni-Zn Composite, Metal. Mater. Trans. A, 2016, 47(5), p 2267–2276.

    Article  CAS  Google Scholar 

  28. M. Hosseini and H.D. Manesh, Bond Strength Optimization of Ti/Cu/Ti Clad Composites Produced by Roll-Bonding, Mater. Des., 2015, 81, p 122–132.

    Article  CAS  Google Scholar 

  29. Y. Yang, D. Wang, J. Lin, G. Lin and J. Ma, Evolution of Structure and Fabrication of Cu/Fe Multilayered Composites by a Repeated Diffusion-Rolling Procedure, Mater. Des., 2015, 85, p 635–639.

    Article  CAS  Google Scholar 

  30. M. Ma, P. Huo, W. Liu, G. Wang and D. Wang, Microstructure and Mechanical Properties of Al/Ti/Al Laminated Composites Prepared by Roll Bonding, Mater. Sci. Eng. A, 2015, 636, p 301–310.

    Article  CAS  Google Scholar 

  31. F. Yoshida and R. Hino, Forming Limit of Stainless Steel-Clad Aluminium Sheets under Plane Stress Condition, J. Mater. Process. Technol., 1997, 63(1), p 66–71.

    Article  Google Scholar 

  32. Y. Miao, D. Han, X. Xu and B. Wu, Phase Constitution in the Interfacial Region of Laser Penetration Brazed Magnesium-Steel Joints, Mater. Charact., 2014, 93, p 87–93.

    Article  CAS  Google Scholar 

  33. H.D. Manesh and A.K. Taheri, The Effect of Annealing Treatment on Mechanical Properties of Aluminum Clad Steel Sheet, Mater. Design, 2003, 24(8), p 617–622.

    Article  Google Scholar 

  34. C. Bettles and M. Barnett, Advances in Wrought Magnesium Alloys: Fundamentals of Processing, Properties and Applications, Elsevier, Amsterdam, 2012.

    Book  Google Scholar 

  35. E. Yukutake, J. Kaneko and M. Sugamata, Anisotropy and Non-Uniformity in Plastic Behavior of Az31 Magnesium Alloy Plates, Mater. Trans., 2003, 44(4), p 452–457.

    Article  CAS  Google Scholar 

  36. K. Iwanaga, H. Tashiro, H. Okamoto and K. Shimizu, Improvement of Formability from Room Temperature to Warm Temperature in Az-31 Magnesium Alloy, J. Mater. Process. Technol., 2004, 155, p 1313–1316.

    Article  Google Scholar 

  37. X. Huang, K. Suzuki, A. Watazu, I. Shigematsu and N. Saito, “Improvement of Formability of Mg–Al–Zn Alloy Sheet at Low Temperatures Using Differential Speed Rolling, J. Alloys Compd., 2009, 470(1), p 263–268.

    Article  CAS  Google Scholar 

  38. Y. Chino, K. Sassa and M. Mabuchi, Texture and Stretch Formability of a Rolled Mg–Zn Alloy Containing Dilute Content of Y, Mater. Sci. Eng. A, 2009, 513, p 394–400.

    Article  Google Scholar 

  39. Y. Chino, K. Sassa and M. Mabuchi, Enhanced Stretch Formability of Mn-Free Az31 Mg Alloy Rolled by Cross-Roll Rolling, J. Mater. Sci., 2009, 44(7), p 1821–1827.

    Article  CAS  Google Scholar 

  40. H. Inoue, M. Ishio, T. Takasugi, Texture, Tensile Properties and Press Formability of Mg-3al-1zn/Ti Clad Sheets Produced by Roll-Bonding. In Proceeding of Trans Tech Publ, pp. 645-650.

  41. W. Wang, L. Huang, K. Tao, S. Chen and X. Wei, Formability and Numerical Simulation of Az31b Magnesium Alloy Sheet in Warm Stamping Process, Mater. Des., 2015, 87, p 835–844.

    Article  CAS  Google Scholar 

  42. J. Liu, Z. Cui and C. Li, Modelling of Flow Stress Characterizing Dynamic Recrystallization for Magnesium Alloy Az31b, Comput. Mater. Sci., 2008, 41(3), p 375–382.

    Article  CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Hashemi.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Hill’s Yield Function

Appendix: Hill’s Yield Function

$$f\left( \sigma \right) = \sqrt {F\left( {\sigma _{{22}} - \sigma _{{33}} } \right)^{2} + G\left( {\sigma _{{33}} - \sigma _{{11}} } \right)^{2} + H\left( {\sigma _{{11}} - \sigma _{{22}} } \right)^{2} + 2L\sigma _{{23}} + 2M\sigma _{{31}} + 2N\sigma _{{12}} }$$
(A-1)

F, G, H, L, M, and N are constants determined by the testing of the material in altered orientations, which can be defined using Eqs. (A-2)–(A-7).

$$F = \frac{{\left( {\sigma ^{0} } \right)^{2} }}{2}\left( {\frac{1}{{\sigma _{{22}}^{2} }} + \frac{1}{{\sigma _{{33}}^{2} }} - \frac{1}{{\sigma _{{11}}^{2} }}} \right) = \frac{1}{2}\left( {\frac{1}{{R_{{22}}^{2} }} + \frac{1}{{R_{{33}}^{2} }} - \frac{1}{{R_{{11}}^{2} }}} \right)$$
(A-2)
$$G = \frac{{\left( {\sigma ^{0} } \right)^{2} }}{2}\left( {\frac{1}{{\sigma _{{33}}^{2} }} + \frac{1}{{\sigma _{{11}}^{2} }} - \frac{1}{{\sigma _{{22}}^{2} }}} \right) = \frac{1}{2}\left( {\frac{1}{{R_{{33}}^{2} }} + \frac{1}{{R_{{11}}^{2} }} - \frac{1}{{R_{{22}}^{2} }}} \right)$$
(A-3)
$$H = \frac{{\left( {\sigma ^{0} } \right)^{2} }}{2}\left( {\frac{1}{{\sigma _{{11}}^{2} }} + \frac{1}{{\sigma _{{22}}^{2} }} - \frac{1}{{\sigma _{{33}}^{2} }}} \right) = \frac{1}{2}\left( {\frac{1}{{R_{{11}}^{2} }} + \frac{1}{{R_{{22}}^{2} }} - \frac{1}{{R_{{33}}^{2} }}} \right)$$
(A-4)
$$L = \frac{3}{2}\left( {\frac{{\tau ^{0} }}{{\sigma _{{23}} }}} \right)^{2} = \frac{3}{{2R_{{23}}^{2} }}$$
(A-5)
$$M = \frac{3}{2}\left( {\frac{{\tau ^{0} }}{{\sigma _{{13}} }}} \right)^{2} = \frac{3}{{2R_{{13}}^{2} }}$$
(A-6)
$$N = \frac{3}{2}\left( {\frac{{\tau ^{0} }}{{\sigma _{{12}} }}} \right)^{2} = \frac{3}{{2R_{{12}}^{2} }}$$
(A-7)

In the above equations, \(\sigma _{{ij}}\) is the measured yield stress value; \(\sigma ^{0}\) is the user-defined reference yield stress specified for the plasticity definition; \(R_{{11}}\), \(R_{{22}}\), \(R_{{33}}\), \(R_{{12}}\), \(R_{{13}}\), and \(R_{{23}}\) are the anisotropic yield stress ratios; and \(\tau ^{0} = \frac{{\sigma ^{0} }}{{\sqrt 3 }}\) . The six yield stress ratios are, therefore, defined in the following Eqs.:

$$R_{{ii}} = \frac{{\sigma _{{ii}} }}{{\sigma ^{0} }},i = 1 - 3$$
(A-8)
$$R_{{ij}} = \frac{{\sigma _{{ij}} }}{{\tau ^{0} }},i \ne j,i = 1,2j = 2,3$$
(A-9)

If \(\sigma ^{0}\) in the metal plasticity model is defined to be equal to \(\sigma _{{11}}\); therefore, \(R_{{11}} = 1\), and given the relationships above, \(R_{{ij}}\) is obtained using Eq. (A-9):

$$[R_{{ij}} ] = \left[ {\begin{array}{*{20}l} {R_{{11}} = 1} \hfill & {R_{{12}} = \sqrt {\frac{{3r_{{90}} \left( {r_{0} + 1} \right)}}{{\left( {2r_{{45}} + 1} \right)\left( {r_{{90}} + r_{0} } \right)}}} } \hfill & {R_{{13}} = 1} \hfill \\ \vdots \hfill & {R_{{22}} = \sqrt {\frac{{r_{{90}} \left( {r_{0} + 1} \right)}}{{r_{0} \left( {r_{{90}} + 1} \right)}}} } \hfill & {R_{{23}} = 1} \hfill \\ {{\text{SYM}}} \hfill & \cdots \hfill & {R_{{33}} = \sqrt {\frac{{r_{{90}} \left( {r_{0} + 1} \right)}}{{\left( {r_{{90}} + r_{0} } \right)}}} } \hfill \\ \end{array} } \right]$$
(A-9)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abedi, R., Akbarzadeh, A., Hadiyan, B. et al. Formability of Tri-layered IF240/AZ31/IF240 Composite with Strong Bonding: Experimental and Finite Element Modeling. J. of Materi Eng and Perform 30, 8402–8411 (2021). https://doi.org/10.1007/s11665-021-06007-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06007-5

Keywords

Navigation